The Cardiac Cycle

- the events that must occur in order for the heart to pump blood
- each cycle is completed in 0.86s under resting conditions
 - assumes resting hr = 70
The Cardiac Cycle

- two important concepts:
 1. electrical events precede mechanical events
 - because the electrical events CAUSE the mechanical events
 - for example, depolarization of the atria must come just before contraction of the atria

2. valves open and close passively, based on pressure gradients on either side of the valve
 - this diagram shows the changes on the left side of the heart
 - right side is similar, but at lower pressures
The Cardiac Cycle

• Valve positions at start of cycle:
 - Left atrial pressure > left ventricular pressure
 • Mitral valve is open
 - Blood can flow from atrium to ventricle (passive filling)
 - Left ventricular pressure < aortic pressure
 • Aortic semilunar valve is closed
 - Blood cannot flow between ventricle and aorta

The Cardiac Cycle

First event in cycle:
• SA Node fires, depolarization spreads throughout atria
 - Causes P wave on ECG
• Depolarization of left atrium causes atrial contraction at about mid-point of P wave
 - Squeezes some blood from atrium into left ventricle
 • Both left atrial and left ventricular pressure go up
 - Left atrial pressure still is slightly greater than left ventricular pressure
 • Mitral valve still open
 - Left ventricular volume reaches its maximum
 • End diastolic volume
The Cardiac Cycle

Next event:
- AV Node depolarizes, then Bundle of His, AV bundles, and Purkinje fibers
 - causes depolarization of all ventricular muscle fibers
 - QRS complex on ECG
 - ventricle muscle fibers respond by contracting
 - ventricular systole

• as ventricle contracts, pressure in the left ventricle goes up
 - quickly exceeds atrial pressure
 - mitral valve closes
 - causes first heart sound
 - still less than aortic pressure
 - aortic semilunar valve still closed
• with both valves closed, blood can neither enter nor leave ventricle
 - period of isovolumic contraction
 - sometimes incorrectly called isovolumetric contraction
The Cardiac Cycle

Once ventricular pressure > aortic pressure:
- the aortic semilunar valve opens and blood can now leave the ventricle
 - period of ejection
 - ventricular volume goes down
 - biggest drop in first half of ejection
 - with exercise, the ejection time will be reduced, but ejection volume goes up as ventricular contractility is increased

The Cardiac Cycle

- ventricular pressure continues to rise as ventricle contracts
 - but eventually, pressure peaks, then falls as blood volume has dropped dramatically
 - heart muscle repolarizes while pressure is dropping, causing T wave on ECG
- about 55% of end diastolic volume is ejected under resting conditions
 - higher percentage when exercising, due to increased contractility
The Cardiac Cycle

when left ventricular pressure < aortic pressure:
- aortic semilunar valve soon closes (not immediately due to momentum of blood ejection)
 - diastolic notch as aortic blood slams back against closed valve
 - creates second heart sound
 - ejection ends
 - both valves now closed
 - heart muscle now relaxing
 - pressure in left ventricle continues to fall dramatically
 - period of isovolumic relaxation
 - volume of blood left in left ventricle is called the end systolic volume

The Cardiac Cycle

once left ventricular pressure < left atrial pressure:
- the mitral valve opens
- blood can now flow from atrium to ventricle
 - period of ventricular filling
 - highest rate of filling in first half of period
 - period will be shortened during exercise without major drop in end diastolic volume
 - cycle then repeats with next SA Node depolarization
Cardiac Output

- amount of blood ejected from ventricle in 1 minute
- product of stroke volume (amount ejected per systole) and heart rate
 - regulating cardiac output = regulating stroke volume and heart rate
- typically around 5 L/min at rest
 - \((70 \text{ ml} \cdot \text{b}^{-1}) \cdot (70 \text{ b} \cdot \text{min}^{-1}) = (4900 \text{ ml} \cdot \text{min}^{-1})\)
- can increase 5 fold during exercise
 - extra is called cardiac reserve
Regulation of Cardiac Output

- regulation of stroke volume
 - typically, heart ejects 55% of end diastolic volume
 - ejection fraction = 0.55
 - three factors affect stroke volume:
 1. Preload
 2. Contractility
 3. Afterload

Regulation of Cardiac Output

1. preload:
 - stretch on heart muscle by end diastolic volume
 - Frank-Starling Law of the Heart:
 - within limits, an increase in preload stretches myocardial fibers, giving better overlap of actin and myosin and hence stronger contraction.
 - venous return to heart not only stretches muscle, but it determines the amount of blood that is available for ejection
 - muscle pump and thoracic pump increase venous return
Regulation of Cardiac Output

2. contractility
 • the strength of contraction
 – can be increased by sympathetic nervous system stimulation
 – also increased by any drug that increases the length of time L-type Ca\(^{2+}\) channels are open
 » positive inotropic agents

3. afterload: the pressure that the ventricle must exceed in order to open aortic semilunar valve and eject blood (equals diastolic pressure)

Regulation of Cardiac Output

• regulation of heart rate
 – sympathetic and parasympathetic nervous systems
 – baroreflex
 – chemoreflex